电机如何旋转 电机的旋转原理是什么
来源:爱游戏最新官网入口    发布时间:2024-04-05 07:22:43

  世界上功率消耗量的近一半是由电机消耗,因此在解决世界能源问题上,电机的高效率化被称为是最有效的措施。

  一般情况下指将磁场内电流流通产生的力转变为旋转动作,在广义范围内还包括直线动作。

  按电机驱动的电源种类,可分为DC电机和AC电机。而 根据电机旋转原理,大致可分为以下几种。(特殊电机除外)

  首先,为便于后续电机原理说明,我们来回顾一下有关电流、磁场和力的基本定律/法则。虽然有一种怀旧的感觉,但如果平时不常使用磁性元器件,就很容易忘记这些知识。

  例如,当考虑到旋转角度仅为θ的状态时,与b和d成直角作用的力为sinθ,因此a部分的转矩Ta由以下公式表示:

  该公式不仅适用于矩形,也适用于圆形等其他常见形状。电机是利用了该原理。

  在带旋转轴的永久磁铁周围,①旋转磁铁(使产生旋转磁场),②则根据 N极与S极异极相吸、同级相斥原理,③带旋转轴的磁铁将旋转。

  导线中流过电流使其周围产生旋转磁场(磁力)从而磁铁旋转,实际上与此是一样的动作状态。

  另外,将导线绕成线圈状,则磁力被合成,形成大的磁场通量(磁通量),产生N极和S极。

  在此,作为旋转电机的实际方法,介绍利用三相交流和线圈制造旋转磁场的方法。

  如上所述,缠绕铁芯的线°配置U相线圈、V相线圈、W相线圈,电压高的线圈产生N极,电压低的线圈产生S极。

  各相位按正弦波变化,因此各线圈产生的极性(N极、S极)和其磁场(磁力)将发生变化。

  此时,单看产生N极的线圈,按U相线圈→V相线圈→W相线圈→U相线圈依次变化,从而发生旋转。

  下图中给出了步进电机、有刷直流(DC)电机、无刷直流(DC)电机这三种电机的大概构造和对比。这些电机的基本组成部件主要为线圈、磁铁和转子,另外由于种类不同,又分线圈固定型和磁铁固定型。

  以下为与示例图相关的结构说明。由于更细致地划分的话,还有几率存在其他结构,因此请理解本文中介绍的是大框架下的结构。

  这里的有刷直流电机的磁铁在外侧固定,线圈在内侧旋转。由电刷和换向器(commutator)负责向线圈供电和改变电流方向。

  由于马达电机种类不同,即使基本组成部件相同其结构也有不同。具体将在各部分进行详细说明。

  下面是经常在模型中使用的有刷直流电机的外观,以及普通的两极(2个磁体)三槽(3个线圈)型电机的分解示意图。也许很多人都有拆卸电机、拿出磁铁的经验。

  可以看到有刷直流电机的永磁体是固定的,有刷直流电机的线圈可以绕内部中心旋转。固定侧称为“定子”,旋转侧称为“转子”。

  旋转中心轴的外围有三个换向器(用于电流切换的弯曲金属片)。为了尽最大可能避免彼此接触,换向器之间间隔120°(360°÷3枚)配置。换向器随着轴的旋转而旋转。

  一个换向器连接有一个线圈端和另一个线圈端,并且三个换向器和三个线圈作为电路网形成一个整体(环形)。

  两个电刷被固定在0°和180°处,以便与换向器接触。外部直流电源与电刷相连接,电流按电刷→换向器→线圈→电刷的路径流动。

  线圈A在最上方,将电源连接到电刷,设左侧为(+),右侧为(-)。大电流从左电刷通过换向器流到线圈A。这是线圈A的上部(外侧)变为S极的结构。

  而由于线从左电刷流向线圈B和线圈C的方向与线圈A相反,因此线圈B和线圈C的外侧变为弱N极(在图中用略小字母表示)。

  从③到④上侧的线圈持续受到向左动的力,下部的线圈持续受到向右动的力,并继续逆时针方向旋转

  在线°旋转到③和④状态下,当线圈位于中心水平轴上方时,线圈的外侧变为S极;当线圈位于下方时变为N极,并且反复该运动。

  换句话说,上侧线圈反复受到向左动的力,下侧线圈反复受到向右动的力(均为逆时针方向)。这使转子始终逆时针旋转。

  如果将电源连接到相对的左电刷(-)和右电刷(+),则线圈中会产生方向相反的磁场,因此施加到线圈上的力的方向也相反,变为顺时针旋转。

  此外,当断开电源时,有刷电机的转子会因没有了使之继续旋转的磁场而停止旋转。

  左侧是用来旋转光盘播放设备中的光盘的主轴电机示例。共有三相×3共9个线圈。右侧是FDD设备的主轴电机示例,共有12个线)。线圈被固定在电路板上,并缠绕在铁芯上。

  在线圈右侧的盘状部件是永磁体转子。外围是永磁体,转子的轴插入线圈的中心部位并覆盖住线圈部分,永磁体围绕在线圈的外围。

  该内部结构简图是结构很简单的2极(2个磁体)3槽(3个线圈)电机示例。它类似于极数和槽数相同的有刷电机结构,但线圈侧是固定的,磁体可以旋转。当然,没有电刷。

  在这种情况下,线圈采用Y形接法,使用半导体元件为线圈供给电流,根据旋转的磁置来控制电流的流入和流出。在该示例中,使用霍尔元件来检测磁体的位置。霍尔元件配置在线圈和线圈之间,根据磁场强度检测产生的电压并用作位置信息。在前面给出的FDD主轴电机的图像中,也能够正常的看到在线圈和线圈之间有用来检测位置的霍尔元件(线圈的上方)。

  霍尔元件是众所周知的磁传感器。可将磁场的大小转换为电压的大小,并以正负来表示磁场的方向。下面是显示霍尔效应的示意图。

  霍尔元件利用了“当电流IH流过半导体并且磁通B与电流成直角穿过时,会在垂直于电流和磁场的方向上产生电压VH”的这种现象,美国物理学家Edwin Herbert Hall(埃德温·赫伯特·霍尔)发现了这种现象并将其称为“霍尔效应”。产生的电压VH由下列公式表示。

  如公式所示,电流越大,电压越高。常利用这个特性来检测转子(磁体)的位置。

  下面将按照步骤①~⑥来说明无刷电机的旋转原理。为了易于理解,这里将永磁体从圆形简化成了矩形。

  ①在三相线点钟方向上,线点钟方向上,线极永磁体的N极在左侧,S极在右侧,并能旋转。

  使电流Io流入线,以在线圈外侧产生S极磁场。使Io/2电流从线流出,以在线圈外侧产生N极磁场。

  在对线的磁场进行矢量合成时,向下产生N极磁场,该磁场是电流Io通过一个线倍大小,与线倍。这会产生一个相对于永磁体成90°角的合成磁场,因此能产生最大扭矩,永磁体顺时针旋转。

  ②在旋转了30°的状态下,电流Io流入线,使线中的电流为零,使电流Io从线流出。

  线的外侧变为S极,线的外侧变为N极。当矢量合成时,产生的磁场是电流Io通过一个线)倍。这也会产生相对于永磁体的磁场成90°角的合成磁场,并顺时针旋转。

  当根据旋转位置减小线的流入电流Io、使线的流入电流从零开始增加、并使线的流出电流增加到Io时,合成磁场也顺时针旋转,永磁体也继续旋转。

  ※假设各相电流均为正弦波形,则此处的电流值为Io × sin(π⁄3)=Io × √3⁄2 通过磁场的矢量合成,得到总磁场大小为一个线 倍。当各相电流均为正弦波时,无论永磁体的位置在哪,矢量合成磁场的大小均为一个线倍,并且磁场相对于永磁体的磁场成90°角。

  ③在继续旋转了30°的状态下,电流Io/2流入线流入线,电流Io从线流出。

  线的外侧变为S极,线的外侧也变为S极,线的外侧变为N极。当矢量合成时,产生的磁场是电流Io流过一个线倍(与①相同)。这里也会产生相对于永磁体的磁场成90°角的合成磁场,并顺时针旋转。

  这样,如果不断根据永磁体的位置依次切换流入线圈的电流,则永磁体将沿固定方向旋转。同样,如果使电流反向流动并使合成磁场方向相反,则会逆时针旋转。

  下图连续显示了上述①~⑥每个步骤的每个线圈的电流。通过以上介绍,应该能理解电流变化与旋转之间的关系了。

  步进电机是一种可以与脉冲信号同步准确地控制旋转角度和转速的电机,步进电机的也称为“脉冲电机”。由于步进电机无需使用位置传感器仅通过开环控制即可实现准确的定位而被广泛用于需要定位的设备中。

  在外观示例中,给出的是HB(混合)型和PM(永磁)型步进电机的外观。在中间的结构图给出的也是HB型和PM型的结构。

  步进电机是线圈固定、永磁体旋转的结构。右侧的步进电机内部结构概念图是使用两相(两组)线圈的PM电机示例。在步进电机基本结构示例中,线圈配置在外侧,永磁体配置在内侧。线圈除了两相外,还有三相和五相等相数较多的类型。

  有些步进电机具有其他不同的结构,但是为了便于介绍其工作原理而在本文中给出了基本结构的步进电机。通过本文希望了解步进电机基本上采用线圈固定、永磁体旋转的结构。

  下面使用下图来介绍步进电机的基本工作原理。这是上面两相双极型线圈每一相(一组线圈)的励磁示例。该图的前提是状态从①到④变化。线圈分别由线和线组成。另外,电流箭头表示电流流动方向。

  通过电子电路按照上述①至④的顺序切换流过线圈的电流,即可使步进电机旋转。在该示例中,每一次开关动作会使步进电机旋转90°。另外,当使电流不断流过某一线圈时,可以保持停止状态并使步进电机具有保持转矩。顺便提一下,如果将流过线圈的电流顺序反过来,则可以使步进电机反向旋转。

  0 引言 风能是可再生能源中发展最快的清洁能源,也是最具有大规模开发和商业化发展前景的可再生能源。随着能源消耗日益增长,环境进一步恶化,世界各国都把发展可再生的“绿色”能源作为本国能源战略的重点。风力发电是风能利用的主要方式,近年来我国在风电技术和风电产业方面都取得了长足进步,但是在兆瓦级风力发电机组的设计技术和制造技术方面都还处于起步阶段,自主创新能力还很薄弱实践经验积累不足,控制技术与国外先进技术有较大差别。 变桨距控制系统作为兆瓦级风力发电机组控制系统的核心部分之一,对机组安全、稳定、高效的运行具有十分重要的作用。稳定的变桨距控制已成为当前兆瓦级风力发电机组控制技术研究的热点和难点之一。因此,有必要对兆瓦级风力发电机

  组变桨距控制系统研究 /

  单片机源程序如下 #include reg52.h #define uchar unsigned char #define uint unsigned int uint speed = 100; //初始转速 uint max = 200; //最慢转速 uint min = 20; //最快转速 sbit swich = P2^0; //总开关 sbit dir = P2^1;

  控制 /

  单片机源程序如下: #include REG52.H //包含51单片机相关的头文件 #define uchar unsigned char #define uint unsigned int /*================== 对各个输出端口的定义 对占空比的端口定义 ====================*/ sbit IN4=P1^3; //定义左轮前进 sbit IN3=P1^2; //定义左轮后退 sbit IN1=P1^0; //定义右轮前进 sbit IN2=P1^1;

  中国上海,2018年05月28日——随着人们对高科技生活、产品智能化需求的不断加深,家用投影仪也向着便捷人们生活方向发展,时下可供用户选择的智能微型投影机可谓各式各样。近日,美国优派( ViewSonic )推出新款M1便携投影机, 360度 旋转 功能为用户提供各方位投射角度,120000:1对比度搭载高清大屏与hifi高音质设备,配备的自动垂直梯形校正功能,能自动适应投射角度,方便快捷且实用。同时,M1便携投影机时尚与智能并存,148x126x40.5mm小巧机身与750g超轻重量,突出其轻巧便携。时下,优派M1便携投影机已荣膺了2018 德国iF设计奖,凭借其品质功能为追求便捷显示功能的用户所设计,成为微型投影机中实至名归的

  DMA传输: 原理:DMA 传输将数据从一个地址空间复制到另外一个地址空间。 DMA传输数据,但是不需要占用MCU,即在传输数据时,MCU可以做别的事,像多线程。数据传输从外设到存储器或者从存储器到存储器。DMA控制器包含了DMA1和DMA2,其中DMA1有7个通道,DMA2有5个通道,能够理解为传输数据的一种管道。要注意的是,DMA2只存在于大容量单片机中。 工作过程: 1.DMA请求 如果外设想通过DMA传输数据,必须先向DMA控制器发送DMA请求,DMA收到请求信号后,控制器会给外设一个应答信号,当外设应答且DMA控制器收到应答信号后,就会启动DMA传输,直到传输完毕。 DMA有DMA1和DMA2两个控制器,DMA1有两个

  可旋转屏幕手机 LG Wing 在推出时受到了较大的关注,这款特别的手机是 LG Explorer 项目的一部分。 在发布两个月后,来自韩国的一份报告称,这款智能手机自推出以来一直遭受销量不佳的困扰。 据消息来源称,LG 电子迄今为止在韩国销售了不到 50,000 部 LG Wing。一开始,该公司的目标是销售 200 万部,以提高其品牌形象。 遗憾的是,LG Wing 的销量仅是三星在同一时间发布的 Galaxy Note20 的 10%。 尽管 LG U +(LG 官方的电信公司)通过补贴将手机价格降低了一半,但销量并未出现增长势头。同样,LG 希望能够通过广告和产品定位来进行全球推销,但销量也没有改善。 LG W

  Melexis 推出新款高速电感式电机位置解码器,助力简化汽车电气化系统 采用创新架构,内置偏移和传播延迟补偿,可在高达 240,000 e-rpm 的速度下提供准确的抗杂散场位置感应 2021 年 12 月 17 日,比利时泰森德洛 - 全球微电子工程公司 Melexis 今日宣布,推出全新抗杂散场电感式芯片 MLX90510。这款高速位置解码器在极端机械和电气条件下,可以最大限度地减少电子控制单元(ECU)所需的工作,并获得最佳的精度。MLX90510 具备卓越的电磁兼容性(EMC),很适合电机控制、电子制动助力器和电子助力转向应用。 MLX90510 是 Melexis 的首款面向开放市场的电感式

  位置解码器 /

  无刷电机电子换向器是一种常用的电子设备,用于控制电机的旋转方向、速度和力矩。这种换向器可通过外部的信号控制,以此来实现对电机的无级调速和方向发生改变。无刷电机电子换向器是大型机器和装置中最关键的部件之一,它的性能和质量会直接影响到电机的使用效果和寿命,因此被大范围的应用于机械、工程和工业领域。 无刷电机电子换向器的基础原理是基于三相交流电的相位差异,通过不同时间点给予转子对应相位的磁场电流,从而使转子始终处于磁场轴的最佳位置,确保电机正常通电运转。电子换向器由晶体管、集成电路、电容器、电感、二极管和其他电子元件组成,其基本功能是将直流电(DC)转化成交流电(AC),并通过实时计算电机旋转的角度和脉冲数目来控制电机或电动工具的速度和方向。 无

  2024年4月3日 – 专注于推动行业创新的知名新品引入 (NPI) 代理商™贸泽电子 (Mouser Electronics) 紧跟潮流,通过内容丰富的沉浸式 ...

  4月3日消息,据新闻媒体报道,由于Exynos效能始终和高通有差距,三星将继续采用双处理器策略,高通骁龙处理器仍将在S25系列上出现。此前有报道 ...

  AP2905 是一款高效率同步降压稳压器,在 6 V ~ 40 V 宽输入范围内可提供 0 7 A 输出电流。固定5 V输出版本可节省 2个分压电阻 ...

  PN8370M+PN8306M小体积5v2a充电器方案因其节省外围、稳定性很高、功能齐全、深受工程师青睐,在市场得到了广泛应用。PN8370M是一款高性能的原 ...

  PN8611集成超低待机功耗原边控制器、FB下偏电阻和电容、VDD供电二极管、CS电阻及650V高雪崩能力智能功率MOSFET,用于高性能、外围元器件超 ...

  嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科