爱游戏最新官网入口

电机资讯

电机资讯

伺服优化原理和优化方案设计

发布时间:2024-04-07 16:34:02来源:爱游戏最新官网入口

  为了改善模具加工中零件加工表面存在振纹、过切等表面上的质量不佳的问题。文中通过FANUC SERVO GUIDE 软件测试机床的伺服系统性能,针对测试结果,对机床伺服系统三环参数、背隙加速等伺服参数进行逐步调试和优化,并将优化结果应用于某模具样件加工试验,试验根据结果得出,优化后的伺服系统响应性能和机床的加工性能都有所提高。

  数控机床是模具产品的生产载体,其伺服系统性能的好坏直接影响着模具产品的加工质量。一般在机床刚出厂时,厂家会给定一组能确保正常加工的参数值,但并不能发挥机床最佳的加工性能[1]。另一种情况是随着数字控制机床使用时间的增加,机床的机械性能发生了变化。此时与之相关的伺服参数也要随之做出调整,否则会引起机床机电不匹配,造成机床运行不稳,产生振动,使得零件加工表面存在振纹、过切等表面上的质量不佳的问题[2]。因此为了能够更好的保证模具产品的加工精度和表面上的质量,对数字控制机床伺服系统来进行优化显得尤为必要。

  文中通过FANUC SERVO GUIDE 软件测试机床的伺服系统性能,针对测试结果,对机床伺服系统三环参数、背隙加速等参数进行逐步调试和优化,以获得良好的伺服动态性能和机械刚性,使数控机床处于稳定的工作状态,充分发挥最优加工性能,从而提升模具产品加工品质和精度。

  数控机床伺服系统优化的目的,是为了更好地优化机械特性和电气特性之间的配合,以获得更高的伺服系统响应和机械刚性,从而获得更好的加工性能[2]。FANUC 伺服系统控制采用三环控制的方式,如图 1 所示[2-3]。

  FANUC系统将伺服三环控制集成在NC的轴卡上,通过接收NC所发出的指令,经轴卡的三环处理后输出至放大器,驱动电机运行。最内环是电流控制,中间环是速度控制,最外环为位置控制。三环中,电流环是整个伺服系统控制的根本环节,作用是提高系统的快速性,限制最大电流,使系统有足够大的加速转矩。速度环是伺服控制的中间环节,作用是提高系统抗负载扰动能力,抑制速度波动。位置环是最外环,其作用是保证系统的静态精度和动态跟随性能[4]。三环中,电流环响应速度最快,其次是速度环,最后是位置环。若要提高位置环回路增益须先提高速度环回路增益,否则容易导致机床振荡,运行不稳。因此,伺服优化应遵循“由内而外”的原则,秉承先电流环、后速度环,最后位置环的先后顺序来优化。

  伺服优化的实质是根据机床的频率响应曲线、圆弧测试图进行分析,合理调整伺服三环参数,尽可能使各轴精确的跟随移动指令和抑制干扰扭矩,即在一定的机械状态下确保伺服系统不会出现振荡,保证三环控制回路能够在高响应、高刚性下“和谐”工作[5-6]。

  (1)提高伺服电机增益,抑制机床振动通过频率响应测试抑制机床共振点,提高机床增益,以匹配机床的机械刚性、提高电机的响应速度。

  (2)循圆象限凸起抑制,调整加工精度通过观察机床圆弧象限测试进行调整,抑制伺服轴换向时的凸起,消除加工时的象限痕。

  某加工中心使用 FANUC 0i-MF 系统加工模具产品试件,使用AICC功能,进给量为2000mm/min, 经加工后,零件加工表面有明显的振纹,存在过切,如图2所示。

  (1)首先利用 SERVO GUIDE 软件测试机床 3 轴静态频率响应曲线,观察机床的机械性能。静态频率响应测试是 SER⁃VO GUIDE 调试中非常重要的一环,它波形的好坏反映了机床很重要的机械特性,它调整的好坏直接影响了后续圆弧部分的调整,以及机床运行的平稳和加工效果的好坏,在整个调试中具有非常重的分量。频率响应测试通过频率响应测量各轴的共振点,并用滤波器参数来抑制共振[5]。在满足波形要求,保证共振点被抑制的情况下,提高速度环路增益。以 X 轴测试为例,优化前频率响应图如图3所示。

  调试中主要以幅频特性曲线作为考察伺服特性的主要依据[5]。由图3 可知,幅频曲线HZ 范围内幅值低于 0d B,表示系统响应滞后。先检查电流环参数,发现“HRV+

  控制有效”未选中,如图4所示。此功能是在HRV3基础上进行控制的,即HRV3+功能,可以实现电流环更高速响应和较高的速度增益设定。选中“HRV+控制有效”选项,再次测试频响曲线 X轴优化中频率响应波形

  在使用了HRV+控制有效后,低频部分幅值基本接近0d B,系统响应滞后明显改善。但高频部分在 380h Z 左右仍存在明显的共振点。调试中逐步加入滤波器来抑制高频振荡。在使用 HRV 滤波器后机床高频共振被抑制,振荡现象明显减弱。机床消除振动的原则是在抑制掉高频振荡点后,确保机床平稳运行的状态下尽可能提高机床伺服系统速度增益[4]。经反复调试,最终将速度环增益由原来的 150 调整到最终的 180。优化前后的速度环参数设置如图6所示。

  最终优化后X轴频响特性曲线所示。此时曲线d B,高频衰减区域的幅值低于-20d B。经优化后的机床机械特性已明显提高,既充分发挥了伺服的刚性余量,又保证了伺服轴的稳定运行。

  (2)在合理优化了三轴伺服环增益,确保三轴在高刚性下稳定运行后。将 CMR(柔性齿轮比)扩大 10 倍(系统检测精度提升)。因为在机械性能较好的前提下,扩大CMR倍数能够改

  善电流特性曲线,使得机床运行更加平稳,降低电流波动,对加工表面的光洁度一定的改善作用。

  (3)经上述调试后,机床高频振动被抑制,伺服响应性能有所提高。再次加工,奔驰件试件表面振纹已明显改善,但加工试件上仍存在过切现象,需通过圆度测试进一步检测。以 XY

  根据XY轴圆度测试图分析,四个象限均有凸起,Y轴两象限凸起接近 10um。这可能是造成工件加工爬坡过切的原因。在机床系统中,当反冲摩擦的影响较大时,在电机反转时,就会产生延迟,造成圆弧切削时的象限凸起。以Y轴为例,尝试对Y的象限凸起进行补偿,试着将背隙加速补偿参数调大,观察Y 轴象限凸起有所改善,经反复调试,将 Y 轴背隙加速补偿量(NO. 2048)由原来的 200 增加到 600,背隙加速有效时间(NO.2071)由原来的0增加到10。X轴背隙加速补偿量由原来的0增加到300,背隙加速有效时间由原来的0加到6。经优化后的XY轴圆弧图形如图9所示。四个象限凸起均被抑制在5um以内,明显改善。

  完成上述步骤调试后,使用AICC功能,再次加工。由于高频振动得到抑制,象限凸起现象改善,使得机床运行平稳。最终加工效果刀路整齐,表面光滑无振纹,过切现象有所改善。加工后试件如图10所示。

  经试验研究结果表明,通过 FANUC 伺服优化可有效解决模具加工中零件表面振纹和过切现象,改善模具产品表面加工品质和加工精度,提高数字控制机床的加工性能。在实际伺服优化过程中,由于各厂家机床本身机械的不同,装配的差异,其伺服参数调整会有些差异,即便是同一台机床不同时期因磨损使用程度的不同,其伺服优化也并不完全相同,但整个伺服优化的方法和流程大体一致。伺服优化是一项烦琐的工作,需反复调试,摸索总结,方能确定好的优化结果。

  关键字:引用地址:伺服优化原理和优化方案设计上一篇:旋转变压器位置传感器旋变的主要结构和工作原理下一篇:PLC+变频器的电气控制系统主电路原理

  下位测控机的数据采集、显示及存储回放软件设计 下位机测控服务器系统软件包括接口仪器驱动软件和应用软件两部分。其中,接口仪器驱动程序是完成对某一特定仪器的控制与通信的软件程序集合,是连接上层易用软件和底层软件的纽带和桥梁。每个仪器模块都有自己的软件驱动程序,仪器厂商将其以源码的形式提供给用户,用户在应用程序中调用仪器驱动程序。应用程序包含两方面的程序:实现虚拟面板功能的前面板软件程序和定义测试功能的流程图软件程序。它主要功能是给用户提供操作仪器、显示数据的人机接口;实现数据的采集、分析处理、显示、存储等;并将需要在客户端显示的数据发送到Web服务器,同时从Web服务器接收来自远程客户端的控制命令。 数控机床 测控软件的结构化设计

  网络测控系统B/S模式软件设计 /

  交流伺服系统一会停一会好 如果交流伺服系统工作时出现一会停一会的情况,可能有以下几个可能的原因: 编码器信号问题:编码器的信号是伺服系统中很重要的反馈信号,如果编码器信号出现问题,将会导致控制器误判电机状态,从而导致电机运行不稳定。检查编码器是否正常工作,如编码器是否受到干扰、连接是否松动、分辨率是否合适等。 控制器问题:控制器是伺服系统中的核心部件,如果控制器出现问题,将会影响伺服系统的控制效果。检查控制器的输出信号是否正常,以及控制器的参数设置是否合理。 伺服驱动器问题:伺服驱动器是控制电机运行的重要部件,如果伺服驱动器出现问题,将会导致电机运行不稳定或者停止运行。检查伺服驱动器是否正常工作,如电源是否正

  2 数字控制机床网络测控系统的总体设计 2.1 数控机床网络测控系统的设计思路和目标 随着测控网络与信息网络的融合,一方面,人们希望更广泛的使用Internet,试图接入更多的设备,以便在扩充其应用模式的同时享受其带来的更多便利;另一方面,工业化程度的加剧也给测控网络系统的发展提出了新的问题:如何方便地组建一个高效率的、智能化的、能够和其他高层网络互联的测控网络系统。以便于统一集中监控和提高管理决策水平。为了达到这些目的,需要测控网络和信息网络在一定程度上能够共享资源,并且以有效的方式交换信息。所以,从测控网络和信息网络各自的发展来看,它们均已表现出走向对方并相互融合的进步趋势。为了实现这种融合,十分必要研究如何保证它们之间在一定

  网络测控系统——总体设计 (一) /

  交流伺服系统的分类及应用场合 交流伺服系统按照电机类型的不同可以分为两种:异步伺服系统和同步伺服系统。根据控制器的不同,交流伺服系统又可以分为模拟伺服系统和数字伺服系统。 异步伺服系统:异步伺服系统通常使用异步电机作为执行器,常用于低速、大扭矩的应用场合,如压力机、注塑机等。 同步伺服系统:同步伺服系统通常使用永磁同步电机或者感应同步电机作为执行器,具有响应速度快、精度高、效率高等优点,常用于高速、高精度的应用场合,如机床、印刷机、包装机等。 模拟伺服系统:模拟伺服系统通常采用模拟电路控制,具有控制精度低、调试困难等缺点,但是成本低、响应速度快,适用于一些控制要求不高的应用场合。 数字伺服系

  1 引言 随着工业、民用、军事对自动化的需求不断提高,以高性能微处理器为控制策略的数字化交流伺服系统必将成为伺服系统的发展趋势。围绕TI公司推出的高性能数字信号控制器 TMS320F28334 ,重点介绍其在伺服系统中的功能及实际应用。 2 器件介绍 2.1 TMS320F28334简介 TMS320F28334(以下简称F28334)属于F2833x系列,该系列也是TMS320C一2000系列数字信号控制器中的一员。和以前相比,该系列器件有很多性能的提升和扩展。F2833x在继承同类器件32位定点处理器结构的基础上,集成有单指令(32位)IEEE754浮点处理单元。该器件可以执行效率很高的C/C++程序代码,可利用高

  模块设计 /

  系统组成原理 该系统由四部分组成,即微机、伺服控制卡、交流伺服调速系统、传感检测。主控微机与控制卡相连,可以通过数据线发送位置或速度命令,设定pid调节参数,并进行数模(d/a)转换,该模拟信号经过交流伺服放大器放大后驱动伺服电动机。电机轴端装有增量式光电码盘,通过光电码盘提供反馈信号(a、b、in脉冲)来完成位置伺服系统的位置反馈,组成一个半闭环系统。一般将光电码盘装在电机非负载轴的轴端上,便于安装和避免机械部件振动和变形对位置控制管理系统产生不利影响。位置反馈环中传感元件—增量式光电编码器将运动构件实时的位移(或转角)变化量以a、b相差分脉冲形式长线传输到现场控制站(pc机)中进行编码器脉冲计数,以获得数字化位置信息,主控微机机

  数字控制机床具有机、电、液集于一身,技能布满和常识布满的特征,有较高主动化水陡峭出产功率。如今,数控设备的广泛运用是工业公司跋涉设备技能水平有用办法,也是翻开的必经之路。而数控设备的数控系统是其间心肠址,它的牢靠作业,直接联络到悉数设备作业正常与否。也即是说,当数控系统缺点发作后,怎样活络确诊的缺点出处并处理疑问使其康复正常,是跋涉数控设备运用率的火急需要。 可是,我国现稀有控机床上的数控系统种类极点繁复,既有国产的各档数控系统,也有来自国际各国的系统。就作者地址公司而言,各式数字控制机床上运用到的系统就有好几种,如FANUC O-TC,O-TD系统,西门子810,820,880系统,三菱系统,广州数控等等。各型系统凌乱程度良

  日前,从南京市台办获悉,南京市六合区六合数字控制机床产业园被江苏省经信委认定为江苏省高端装备制造业特色产业基地,这是继2011年园区被认定为江苏省中小企业产业集聚示范区、江苏省优质产品生产示范区之后又一省级殊荣。据了解,此次六合数字控制机床产业园是唯一一家以数字控制机床为特色,成功晋级省高端装备制造业特色产业基地的园区,南京市也将在产业园区大力发展工业机器人产业。 六合数字控制机床产业园原名南京台商工业园,始建于2002年,位于六合区雄州街道。经过10年多的发展,园区形成了以数字控制机床为主导产业,其它机床配套厂不断集聚发展,已成为雄州街道先进制造业的重要组成部分,推动着街道工业经济的发展。区内拥有以台资为主的数字控制机床及配套厂70多家,形成了

  Toradex推出公司首款Aquila系列模块系统(SoM),采用AM69 SoC,具有较小的外观尺寸和坚固耐用的约 400 引脚板对板连接器,面向医疗、工 ...

  音视频转换器怎样接电视将音视频转换器与电视连接的方法取决于音视频转换器和电视的接口类型。以下是一些常见的连接方法:1 HD ...

  冰箱慢慢的变成了目前很多中国家庭必备的家用电器之一。随着时下人们的不一样的需求,电冰箱的样式在多样化,功能也慢慢的变丰富。当然。电冰箱的 ...

  音箱矩阵是啥意思音箱矩阵是指将多个音箱组合在一起形成的一个音箱系统。这些音箱以特定的排列方式连接在一起,以产生更广阔的声 ...

  HiFi音响有必要配解码器吗对于HiFi音响系统,要不要配备解码器取决于您的使用需求和音频源的格式。以下是一些关于要不要配备解 ...

  FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科词云: